Spin Crossover in Chromium(II) Complexes and the Crystal and Molecular Structure of the High Spin Form of Bis[1,2-bis(diethylphosphino)ethane]di-iodochromium(II)

Dost M. Halepoto,^a David G. L. Holt,^a Leslie F. Larkworthy,^{a*} G. Jeffery Leigh,^b David C. Povey,^a and Gallienus W. Smitha

From the variation of magnetic properties with temperature trans-bis[1,2-bis(diethylphosphino)ethane]di-iodochromium(II) undergoes a sharp S=2 to S=1 spin-state transition between 165 and 175 K.

Weak field ligands produce high-spin chromium(II) (3d4) complexes (S = 2) with four unpaired electrons (${}^{5}E_{g}$ ground term) and strong field ligands low-spin complexes $(S = 1)^{\dagger}$ with two unpaired electrons (³T_{1g} ground term). Examples of the two classes of complex are $[Cr(en)_3]X_2$ (en = ethylenediamine) and $[Cr(2,2'-bipyridyl)_3]X_2$, for which the essentially temperature-independent effective magnetic moments are respectively 4.8 and 2.9 $\mu_{\rm B}$. Earlier attempts to produce spin-crossover behaviour in six co-ordinate chromium(II) complexes in which two iodides replaced one bipyridyl (bipy) molecule to give [CrI₂(bipy)₂],² or the ligands contained one heterocyclic and one amino nitrogen atom as in 2-aminomethylpyridine, (2-picolylamine, pic),³ were unsuccessful: $[CrI_2(bipy)_2]$ is low spin and although $[CrI_2(pic)_2]$ is high spin, $[Cr(pic)_3]^{2+}$ salts could not be isolated. Some planar chromium(II) complexes show a slowly changing, continuous decrease in effective magnetic moment as the temperature is lowered, but it remains unclear whether this is due to spin-state transition or antiferromagnetic behaviour.4 We have now found that although complexes of chromium(II) halides (Table 1) with the chelating tertiary diphosphines 1,2-bis(dimethylphosphino)ethane (dmpe) and 1,2-bis-(diethylphosphino)ethane (depe) are generally low-spin, the iodo-complex [CrI₂(depe)₂], from magnetic susceptibility investigations shows a sharp spin crossover between 165 and 175 K (Figure 1). From the experimental data, and by assuming temperature-independent magnetic moments of 4.85 and 2.90 μ_B for the S = 2 and S = 1 spin states, the

concentrations, is ca. 171 K.

Complex	$\mu_{\mathrm{eff}}^{295}/\mu_{\mathrm{B}}$	$\mu_{\rm eff}^{90}/\mu_{ m B}$
$[CrCl_2(dmpe)_2]^a$	2.8 ^b	_
$[CrBr_2(dmpe)_2]$	2.92	2.82
Red		
$[CrI_2(dmpe)_2]$	3.04	2.93
Reddish purple		
[CrCl ₂ (depe) ₂] ^c	2.83	2.83
Yellow		
[CrBr ₂ (depe) ₂] ^d	3.30	3.02
Orange	4.040	2.054
$[CrI_2(depe)_2]$	4.84e	2.85d
Purple brown	4.87f	2.82e

transition temperature, when both are present in equal

phosphine to a solution of the hydrated chromium(II) halide in

methanol. Satisfactory microanalyses have been obtained. A

sample of [CrI₂(depe)₂] prepared from anhydrous chrom-

ium(II) iodide showed the same unusual magnetic behaviour

as the sample from the hydrated iodide. The magnetic

behaviour is typical of a discontinuous spin transition taking

place within a narrow temperature range but, from our limited

measurements, it does not show hysteresis. The value of 3.3 μ_B

for the bromo-complex [CrBr₂(depe)₂] at 295 K is higher than

The complexes were prepared by the addition of the

a Department of Chemistry, University of Surrey, Guildford, GU2 5XH, U.K.

b A.F.R.C. Institute of Plant Science Research, Nitrogen Fixation Laboratory, University of Sussex, Brighton, BN1 9RQ, U.K.

Table 1. Effective magnetic moments at 295 and 90 K.

a Ref. 5. b At 25 °C in toluene. c (Cr-Cl) at 335 cm⁻¹. d (Cr-Br) at 295 cm $^{-1}$. e From hydrated CrI_2 in methanol. f From anhydrous CrI_2 in methanol.

[†] Strictly an intermediate spin state because further spin pairing can, in principle, occur in distorted d4 complexes.

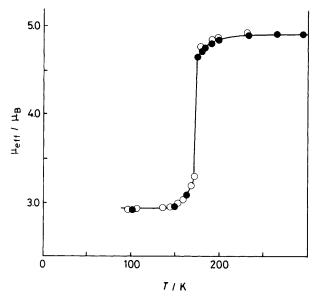
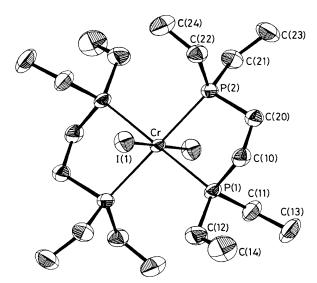



Figure 1. Variation with absolute temperature of effective magnetic moment, cooling (\bullet) , heating (\bigcirc) , of $[CrI_2(depe)_2]$.

Figure 2. The molecular structure of $[CrI_2(depe)_2]$. Selected bond lengths and angles are Cr–I 3.068(0), Cr–P(1) 2.503(1), Cr–P(2) 2.533(1) Å, I(1)–Cr–P(1) 85.50(3), I(1)–Cr–P(2) 88.40(3), P(1)–Cr–P(2) 80.33(4)°.

the values for the other low-spin complexes, suggesting that a small amount of high-spin form may be present at this temperature.

The molecular structure‡ of [CrI₂(depe)₂] has been determined at room temperature. It has a *trans*-configuration (Figure 2) with Cr–I bond distances of 3.068(0) Å and Cr–P distances of 2.503(1) and 2.533(1) Å. The Cr–P distances are *ca.* 0.15 Å longer than those reported (2.365—2.371 Å) for the low-spin analogue [CrCl₂(dmpe)₂]⁵ as might be expected, and the Cr–I distances are comparable with values (*ca.* 3.1 Å) found for the long (distortion axis) bonds in CsCrI₃⁶ and CrI₂.⁷ There are many examples of spin state transitions in complexes with the d⁵, d⁶ and d⁷ configurations, ⁸ but few⁹ with the d⁴ configuration.

Since $[CrI_2(dmpe)_2]$ is low-spin it is clear that minor differences in the phosphine ligand markedly affect the magnetic behaviour. The more heavily substituted chelating diphosphine, 1,2-bis(di-isopropylphosphino)ethane (dippe), forms¹⁰ halide-bridged dimers $[CrX_2(dippe)_2]$, where X = Cl or Br, quite different in structure from *trans*-octahedral $[CrI_2(depe)_2]$ or $[CrCl_2(dmpe)_2]$. The dimers have magnetic moments in acetonitrile consistent with high-spin chromium(II). The complex $[CrBr_2(dippe)(MeCN)]$ also is high-spin. Clearly there is a rich chemistry of chromium(II)-phosphine ligands to be explored.

We thank the S.E.R.C. for a CASE award (to D. G. L. H.) and the Government of Pakistan for a scholarship (to D. M. H.).

Received, 15th May 1989; Com. 9/02020I

References

- 1 L. F. Larkworthy, K. B. Nolan, and P. O'Brien, 'Comprehensive Coordination Chemistry,' 1987, Pergamon, Oxford, vol. 3.
- 2 A. Earnshaw, L. F. Larkworthy, K. C. Patel, and B. J. Tucker, J. Chem. Soc., Dalton Trans., 1977, 2209.
- 3 A. Earnshaw, L. F. Larkworthy, and K. C. Patel, J. Chem. Soc. (A), 1970, 1840.
- 4 L. F. Larkworthy, D. C. Povey, and B. Sandell, *Inorg. Chim. Acta*, 1984, **83**, L29.
- 5 G. S. Girolami, G. Wilkinson, A. M. R. Galas, M. Thornton-Pett, and M. B. Hursthouse, *J. Chem. Soc.*, *Dalton Trans.*, 1985, 1339.6 Ref. 1, p. 765.
- 7 J. W. Tracey, N. W. Gregory, J. M. Stewart, and E. C. Lingalfelter, *Acta Crystallogr.*, 1962, **15**, 460.
- 8 P. Gütlich, *Struct. Bonding*, 1981, **44**, 83; E. König, G. Ritter, and S. K. Kulshreshtha, *Chem. Rev.*, 1985, **85**, 219.
- 9 M. H. Chisholm, D. J. Ironmonger, E. M. Kober, and P. Thornton, *Polyhedron*, 1985, 4, 1869.
- 10 A. R. Hermes and G. S. Girolami, *Inorg. Chem.*, 1988, 27, 1775.

‡ Crystal data: C₂₀H₄₈CrI₂P₄, triclinic, space group $P\overline{1}$, Z=1; a=8.960(3), b=10.275(3), c=8.393(5) Å, $\alpha=98.56(37)$, $\beta=104.28(39)$, $\gamma=96.04(28)^{\circ}$, U=732.3 (1.2) Å³, $D_c=1.629$ g cm⁻³, F(000)=358, $\mu(\text{Mo-}K_{\alpha})=26.9$ cm⁻¹, R=0.035, $R_{\rm w}=0.046$, for 2405 reflections $[I>3\sigma(I)]$ measured on an Enraf-Nonius CAD-4 diffractometer. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.